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Role of quantum interference in thermodynamic equilibrium

V. I. Savchenkd, N. J. Fischt A. A. Pantelee\? and A. N. Starostih
IPlasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543
2TRINITI and Moscow Institute of Physics and Technology, Moscow Region, Russia

(Received 22 January 1998

The influence of quantum interference between different decay channels of three-level atoms on various
characteristics of matter and radiation is considered for the case of thermodynamic equilibrium of atoms in a
photon gas. It is shown that for rare gases when collisions between atoms are not important, the direct
consequence of such an interference is a spontaneously induced atomic coherence between two upper levels.
Therefore, for an accurate description of such atoms and radiation in thermodynamic equilibrium with each
other it is not sufficient to specify only Boltzmann exponents, which correspond to the diagonal elements of the
density matrix. The reason for this is that the conventional Boltzmann description is applied to infinitely sharp
eigenstates of the unperturbed Hamiltonian. As we show, it becomes essential to take into account nonzero
width of the levels if the levels are relatively close to each other. This produces nonzero nondiagonal elements
of the density matrix that modify the emissivity of the equilibrium medium and lead to a zero point at a certain
frequency as well as to an enhanced intensity in the red wing at the corresponding temperature. It is shown that
the occupation number of the photons is not changed and obeys the equilibrium Planck distribution.
[S1050-294{@8)06911-X

PACS numbd(s): 42.50.Ct, 42.50.Lc

I. INTRODUCTION system. Therefore, our conclusion is that to describe the ther-
modynamic equilibrium of the three-level atoms in question
Quantum interference between different decay channelith the photon gas it is not sufficient to specify only Bolt-
[1,2] in three-level atoms has attracted much interest in rezmann exponents, which correspond to the diagonal ele-
cent yearg$3,4]. It was shown that it leads to the appearancements of the density matrix. One needs to compute nondi-
of nondiagonal elements in the spontaneous relaxation operagonal elements as well, which become nonzero for the
tor that are responsible for such effects as lasers witholdtomic system considered. The underlying reason for this is
inversion[5,6], spectral line narrowinf3, 1], line elimination ~ that the conventional Boltzmann description is applied to
[4], and cancellation of spontaneous emission over the ranggfinitely sharp eigenstates of the unperturbed Hamiltonian,
of frequencieg7]. in our case the Hamiltonian of the atom. As upper levels
Depending on the atomic scheme and the environmerfecome broadened through the interaction with zero fluctua-
considered, quantum interference may be of a different oritions of the radiation field, their overlapping becomes impor-
gin. It may be due to either the coherent laser fld®,9 or  tant and produces nonzero nondiagonal elements of the den-
spontaneous emission from two closely spaced upper leveRity matrix.
[]__3,3 or both []_O] One type of interference is due to co- We show that these elements lead to the same Planck
herent properties of the laser field, while the other one iglistribution equilibrium that photons should obey. We find,
produced by the Coup"ng of the upper levels to the samélowever, that the quantum interference modifies the emissiv-
quantum mode of the radiation field. This interference isity of the medium, which acquires a dark line at a certain
known to lead to nondiagonal elements of the relaxation opfrequency. More importantly, this interference increases
erator{1-3,5,10,1), which may also have an additional con- sharply with the intensity of the recently predictei®] and
tribution due to Lamb shift§7].
In this paper we consider three-level atoms in thermody- 2
namic equilibrium with the resonant photon gas and investi- 3
gate the influence of quantum interference due to spontane-
ous emission from two upper levels on various properties of
radiation and matter. The dipole transitiof{®)—|1) and
|3)—|1) (see Fig. 1 should be allowed by selection rules
for this interference to occur.
We show that the direct consequence of quantum interfer-
ence in question is the appearance of a nonzero coherence
between upper levels even in thermodynamic equilibrium.
This is certainly a surprising result since one would expect
no processes inducing coherence to be present in equilib-

rium. However, as will become clear later, coupling of the 1
upper levels to the same quantum mode of the radiation field
is such a process, which is an inherent property of the atomic FIG. 1. Three-level atoms.
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observed 13] red wing of the equilibrium spectrum. a) k b)
We obtained this result under conditions in which atomic k
vapor is rare enough so that one can neglect collisions be-

tween atoms and take into account only the interaction with 3 3 3 o)
photons. It is easy to generalize this result to higher densities

and include collisions. Then one has to compare the rate of — -+ - -+

destruction of atomic coherence due to collisiegsvith the Gll(p'k ) GH(P'k )

rate of its creation/A,A; (see belowdue to quantum inter-

ference in order to draw a conclusion about the form of the Z_+ Z—F

spectrum, density matrix, etc. In the case wher. VA,A3 33 32
our main conclusions are still valid.
Note that the model atomic scheme of the Fig. 1 should FIG. 2. Mass operators of a three-level atom.

not necessarily be that of an inherent atomic Hamiltonian. In
fact, dressed states produced by external electric fields may R 1 . o
have the desired relaxation matrix. This observation makes 3~ 5(2 —377). @
an experimental verification and possible applications of the
predicted effects more feasible. In this paper we use the diganalogously, from
grammatic approach of Keldysii4] and Korenmar15],
which enabled earlier workef42] to analyze correctly equi- ST =SR-3 ITt=—_3R_3+°, 3
librium spectra.

The paper is organized as follows. In Sec. Il we evaluateand Eq.(2) we find
mass operators. In Sec. 1l we find atomic Green’s functions.
Secs. IV and V are devoted to the calculation of the polar-
ization operators and the emissivity of the medium. In Sec.
VI we present our conclusion.

1
S 1 AR @

From similar considerations we arrive at the following for-

mula for 3A;
II. EVALUATION OF MASS OPERATORS

There are two types of Green’s functions involved in the SA~ 3(2%_24)_ (5)
calculations according to the Green’s function approach of 2
Keldysh[14] and Korenmar{15]: retarded(advanced and _
kinetic, which describe the dynamics and kinetics of the sys- AS can be seen from Eq&), (5), and(4) we need to find
tem, respectively. Correspondingly, one needs to evaluat@ly the=™ " andX™ " operators. We now evaluate the first
retarded(advanceiand kinetic mass operators. nonyamshmg_ diagrams, which correspond to the operators

Consider a three-level atofiFig. 1) interacting with the ~depicted in Fig. 2. _ _ _
electromagnetic field. It is now well known that if both tran-  AS can be seen from Fig. 2, diagonal terms of the atomic
sitions are allowed, then coupling of both upper levels to thd€laxation operator can be obtained from the mass operator
same quantum modes leads to nondiagonal elements in tif Fig- 2@), while the interference between two decay chan-
atomic relaxation operatd—7,16. These elements are rep- nels 2—1 and 3—1 is taken into account by the operator in
resented b : ' sae Fig. 2(b). Other mass operatok,,” ,3 5" .24, 245 , are

y the nondiagonal mass operalf$ %55 in A .

the Keldysh-Korenman formalism. As was shown in Ref.represenFed n S|m|lar diagrams. . . .
[16], the real part of these operators, which stems from the.. Analytical Expressions, corresponding to the diagrams in
Lamb shift contribution, leads to nonexponential decay o(li:'g' 2, can be written as
atomic populations and coherences. In this paper we omit

these terms and restrict ourselves only to the imaginary part z§3+(w,p)22 f digld{{}Di]*(wph,k)

of these operators. We also want to remove the Lamb shift i

contribution to the diagonal terms of retardedvancefiand dk dewPh

kinetic mass operators. X G (p—k,w— P -
To do this we use a linear connection between (2m)

SR3A s’ and rewriteSR in the form
35 0= 3 | dydfD] (@

1 1
ER:_5(2**_2++)_§(2+*_2*+)_ (1) B dk dePh
XG11+(p—k1(1)—(1)ph) (271_)4 ’

The term in the first set of parentheses is the Lamb shiffhare we use the
contribution, while that in the second set represents a relax-

ation part. Assuming that the Lamb shifts are already in- D H (0P K)=J::(27)%he, [ N8 0P'— w))

cluded in the corresponding frequencies, we write for re- . )

tarded mass operator the formula +(1+n_y) 5P+ w1, (6)

photon Green’s functlbﬁ+ in free space
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with Jijzéij—kikj/kz, w=kc, and ng being the photon A23=(92—252)(93—23R3)—2§22§3, (16)
number. Assuming for simplicity that atoms are motionless.
Carrying out integrations, we find in the resonance approxiwhere we introduced the notatidd,= w— w,— €p-

mation In the same way we write out by components equations
4d.d h(w )3 for G u, , using Eq.(8) and linear relations for mass opera-
1Yu’1 - ’ H .
uu’(wp p)=i 3 u 3 P_"P N(wp— €p)N1(p), tors and the Green'’s functions:
" G**(E**—E**HE(E**—E**)
. . . . 33 33 33 32 32
wheree,= p2/2m is the kinetic energy of the atord,; is the 2
reduced dipole momeniy,(p) is the distribution function of =S HGR-GA)+SoH(GR-GA 1
atomic electrons in the ground level, andaindu’ stand for a5 (Ca )T 232 (Gzp= G2y, (17)
the upper levels 2 and 3. Mass operatEr&f can be ob- 1
tained froms, ., by the substitutions(w)— 1+ n(w) and Gy (35 =25 )+ 5(237;—2:;;)
N(p)—1—N(p), reflecting the fact that we use Bose statis-
tics for photons and Fermi statistics for atoms. The latter =35, (G5~ G5)+33, (G5—G%,), (18
choice is not important since we consider the nondegenerate
situation. Gas 25— Go St (wpt 35, 35)G3,"
Ill. EQUATIONS FOR ATOMIC GREEN'S FUNCTIONS =35 G333 Gt 25, (G5—G5), (19
The expressions for the mass operators obtained in Sec. Il 53 SR G, Sht (0w SR +35)Go,"
describe the interaction of three-level atoms with the gas of
resonant photons. They determine the evolution of atomic =—3,, Ghat 32 GR+3,."(GR,—G5). (20

Green’s functions and hence enter into the corresponding

equations. In the quasiclassic approximation equations foFhis system is a system of linear algebraic equations and

the retarded and kinetic Green’s functions of the atoms catherefore can be solved easily. To simplify the answer we

be written as will use the following relations for the mass operators, which
follow from Egs.(2), (5), and(7):

. p d
'(E*ﬁﬁ)“"“”’“’ Guw (Ri7iP.) SR=-3A, (20
=200Giut Guiy i ®) 35548= (352 (22
i 9 1 g2 ip o o Also note from Eqgs(7) and (15) that the atomic Green'’s
[2 o +w—w,+ am th >m IR G, functions obey the equalities
- 5uu' +E u u’ ) (9) G§2: G§3’ GQ\ZZ GE\B- (23)

o L As we mentioned in Sec. Il, we made use of the fact that

where it is assumed that the summation is taken over &he occupation number of photons is very small, i,
peated indices. < s -
In this paper we are interested in the case of thermody:. <1, and evaluated mass operators in a one-loop approxima

tion with accuracyO(n,). It is easy to prove that the follow-
namic equilibrium, therefore, we consider the homogeneouIn identity holds in this aporoximation:
space, time-independent case. This simplifies E8sand 9 y PP

é&?\)/ecsonyderably. For the retarded Green’s functions @y. 232+E 2 ~22—2+2A22§2_ (24)
Note that this identity still holds if we interchange any two
(0w~ e) G3p=1+ 3565+ 2565, (10 lower indices, which may belong even to different We
(0—ws—e€,)G=1+33GR+3RGR (11) will use this fact in simplifying the final answers fGJJ, .
pIP3sT ST 2333 2 Now, from Eqs(17)—(20) with the help of Eqs(21)—(24)
(w—w3—ep)G§2=E§3G§2+E§2G§2, (120 and plugging in expressions f(@ﬁu, from Egs.(14)—(16)
we arrive at the following answer f(ﬁl:uf after a few pages
((1) wy— Ep)Gz3 E 623+223G33 (13) of algebra
This system can be easily solved and leads to the following . 03
. . = — . 2
answer forG,,, : Gas S Q 293)2+|922 +932 2’ (25

GR=(Q3—35) Az, GR=(Q—33,)/Az, (14 02

(Q03)2+[ Q355+ Q335)%

Gp =—35 (26)

GH=35 Az, G=35/As, (15
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. 0,0, be true was found in our earlier pagdér,16], where we in-
=23 (00524035 Q52 (27)  vestigated the spontaneous emission of an initially excited
253 25337 T3m22 atom with interfering decay channels. As was explained in

Note the following property of these equations: Once weRef. [16] for the case of a free atom, this coherenpe is a
know the answer foGg," , expressions for all other func- result of a reabsorption of the virtual photon by different

tions can be obtained simply by the appropriate interchange@tom!C Ie\;]els. The_ same mech?nlsrr_ll_l;s_ responsible for the
of indices 352 and 2-3. atomic coherence in our case of equilibrium.

One can see from Eq&25)—(27) that the Green’s func- It is important to realize that such coherence does not lead

tions have a similar structure: The corresponding mass opt-0 a nonzero quadrupole moment of the medium in the ab-

erators are multiplied by the line contours, which give theS€NCce of magnetic fields, as it may seem from the equation
line shape of probability of the atom to emit the photon of a B

certain frequency. However, the line shapes in EG§)— Qi=> Aoy Puu’ » (32
(27) are not normalized. To maintain consistency with the u#u’

interference-free case and to clarify the physical meaning we , i , ) )

rewrite these equations in such a way as to have normalizeffere the atomic density matrix,, is obtained from the
contours on the right-hand side. Carrying out integrationc€en’s function through integration over
over o we find that the normalized contours are

—+
G32

f G (w.p) o (33
r= W, .
QUQU;ECU, puu uu p 27T
ayu (@)= (Q,0 )2+|Q SATQ 2A|2' (28) . )
2%°3 24337 223422 To calculateQ" correctly one needs to carry out calculations
. . for the real levels characterized by the angular momentum
Using Eqs.(28) and (5) we rewrite Eqs(25—(27) as and its projectiodJ,M,). Since the relaxation operator, as
~+ obtained in Ref[16], has ady_w, dependence, it can only
GJJ(w,p)=—ﬁ2wiauu,(w). (29)  lead t0 G,z dy . This coherence, however, leads to a
uu’ - Fud! zero quadrupole moment.

Finally, we substitute instead of @) andN;(w) the Planck Note that Eqs(30) and (31) are valid for the two-level
and Fermi distributions correspondingly and arrive at the fol-Case if we sef3=0 andws,=0. As was rigorously shown in
lowing answer, omitting terms of ordex(w) and N (ep) in Ref.[17], only if the Fermi exponent depends on the fluent
the expression for the contoar,, (w): photqr) frequency, rather than on thg frequency of atomic
transition, does such a Green’s function lead to the correct

. 1 ' Planck distribution for the photons. As we shall see in Sec.
G,y (w)=— m27ﬂauu’(w)a (300 IV, this dependence, which is contained in our re$8Md)
and (31), leads to the same Planck distribution, despite the
T nonzero coherence of EgR0) and (31).
Ay (@)= AulA“'Q“Q“' ) (32) In Sec. Il we assumed that the gas of photons is described
2, = " 2 by the occupation number(w), Wh|ch has a Bose—Emst_eln
(Q203)"+ 7(D2As+ 03h0) distribution. In order to be consistent, we have to obtain the

solution for the photonic Green'’s functions, using the atomic
The most unexpected result that follows from E¥)  Green’s functions30) and (31), to see that our choice is
and(31) is that the nondiagonal atomic Green's function isconsistent. This consistency check is the subject of the next
not zero in thermodynamic equilibrium. It is known that at- section.
oms acquire coherence between levels as a result of the in-
teraction with a monochromatic external classical electro-
magnetic field. Since an electromagnetic field in
thermodynamic equilibrium with atoms does not possess any
of these properties, the obvious conclusion would be that Now we need to evaluate polarization operators in order
atoms cannot have any nonzero coherence between levelstimwrite down equations for the kinetic Green'’s functions for
thermodynamic equilibrium, even when collisions betweerphotons. In the one-loop approximation polarization opera-
atoms are neglected. Besides this objection, we do not knoworsII~* are represented by the sum of diagrams, similar to
any general theorem that would prevent coherence from ddghe one shown in Fig. 3.
veloping in thermodynamic equilibrium. An analytical expression for the operatdr *, based on
The physical reason behind our result, obtained througlrig. 3, can be written as
the diagrammatic approach, is that we take into account the

IV. POLARIZATION OPERATORS AND PHOTONIC
GREEN’S FUNCTIONS

interaction of both upper levels with the same quantum mode 4 o i dw dp _

of the field. As we see later, an electromagnetic field is de- I (k, 0P = 3 (2m)* E Guu (PFK)
scribed by the Planck distribution for the occupation hum- '

bers and hence does not possess a nonzero electric field. X Gy (p)dyrdyy: - (39

Nevertheless, the simultaneous interaction of both upper lev-
els with the same quantum mode is responsible for inducing\nalogously, we can write down expression for the operator
coherence between atomic levels. An indication that this mayl ™ ~:
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G (p+) £/ (arb. units)
uu’ 20
----- C v |
+-
G1 ; p) 15

FIG. 3. Polarization operators of the medium, consisting of
three-level atoms.

10

i do dp -
H+_(k,wph)=§f WE’ G:Ur(p+k)
u,u

XGyy (p)dydyy - (39

In Egs.(34) and(35) the atomic Green’s function should be
taken from Eqs(30) and (31). To find the kinetic photon : ; ‘ \
Green's functiorD ~ " we need to know the ratH * ~: 11~ * -8 -6 -4 =2 2 4

sinceD ™ * is equal to

-+
D "=———— (DR-DA). (36) FIG. 4. Zero point in the emission spectrum. Frequency is nor-
o -1 malized to the widthy, of the level 2. The atomic parameters are
. . (l.)32/’)/2:_3, le/’yZ:lOO, T/’)’2:5, d3l/d21:\/§, and w31/w21
By comparing Egs(34) and(35) we find that =0.7. The thick and thin lines correspond to spectra with and with-
out interference.

H_+=ewph/TH+_. (37)
) ) by omitting nondiagonal terms and making the—0 tran-
Then the functiorD ™ * can be written as sition for each contoua, ().
We plot e(w)/w in Figs. 4 and 5 in different frequency
Dt =—j 1 (DR—DA). (38) ranges in order to outline the influence of the interference on
w™IT_q different parts of the spectrum. The atomic parameters and

the temperature of the medium are normalized/jo
The first multiplier gives the photon statistics, whilzR As we can see from Fig. 4, quantum interference leads to
—D” determines the line contour of propagation of photonshe appearance of a zero point in the emission spectrum of
with different frequencies. We see that the nonzero coherthe medium, as well as to enhancement of the red wing in-
ence of Eqgs.(30) and (31) does not influence the photon tensity (see Fig. . These graphs are plotted for the gas of
statistics. As is obvious from E¢38), the photon occupation atoms, which is in equilibrium with the resonant photon gas.
number is governed by the Bose-Einstein distribution, which

proves the consistency of our earlier assumption. £/ (arb. units)
V. EMISSIVITY OF THE MEDIUM 50
There is one more important characteristic of the medium
in question, namely, its emissivity. It is related to the polar- 40
ization operator through the formula
2i w? . 30
e(w)=— o2 I (w). (39
Plugging in an expression fdi~* from Eqg. (34) and as- 2
suming that the lower level has a zero width, we find
4 @* L
#(0) =3 2l 1 NOIN(0) 2 digdysdu (o),
40 80 60 40 20
whereN(w) = 1/(1+e®'T) is the Fermi distribution function. ((,)_(,)21)/ Y,
In order to see what role is played by interference, we plot
e(w)/w from Eq. (40) with and without interference in Fig. FIG. 5. Enhancement of the red wing due to quantum interfer-

4. The case of no interference can be obtained from(4&].  ence. All conventions are the same as in Fig. 4.
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Recall that when a similar medium of three-level atomsGreen’s functions(30) and (31). This coherence does not
interacts with the laser field, the emission spectrum also hashange the distribution of photons in equilibrium, which
a zero point, the so-called dark liié,4]. Note, however, obeys the conventional Planck formu(&8). It changes,
that these two cases are different since the properties of tHeowever, the emissivity of the medium. Unlike the case of
photon fields are fundamentally different. no interference, the emissivity has a zero point at a certain

frequency. More importantly, atomic coherence between up-
per levels leads to enhancement of the red wing intensity as
VI. CONCLUSION compared to the case of zero nondiagonal elements of the

In summary, we considered the influence of quantum in.denSity matrix. EX.perimer_Y[al verification of the predlcted ef-
terference between two decay channels of three-level aton{§Cts seems feasible owing to recent experiments with so-
on various characteristics of an atomic gas and a radiatioflium dimers[18].
field in thermodynamic equilibrium with each other. We
_found that in the absence of collisions be_tween atoms, thi_s ACKNOWLEDGMENTS
interference does not change the populations of the atomic
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